Какво е обобщена авторегресивна условна хетерокедастичност (GARCH)?
Обобщена авторегресивна условна хетерокедастичност (GARCH) е статистически модел, използван при анализиране на данни от времеви серии, където се счита, че грешката на дисперсията е сериално автокорелирана. Моделите GARCH приемат, че дисперсията на термина за грешка следва процес на авторегресивна подвижна средна стойност.
Ключови заведения
- GARCH е техника за статистическо моделиране, използвана за подпомагане на прогнозата за нестабилността на възвръщаемостта на финансовите активи. GARCH е полезен за оценка на риска и очакваната възвръщаемост на активи, които проявяват клъстеризирани периоди на нестабилност в доходността.
Разбиране на обобщена авторегресивна условна хетерокедастичност (GARCH)
Въпреки че моделите на обобщена авторегресивна условна хетерокедастичност (GARCH) могат да се използват при анализа на редица различни видове финансови данни, като макроикономически данни, финансовите институции обикновено ги използват за оценка на променливостта на възвръщаемостта на акции, облигации и пазарни индекси. Те използват получената информация, за да помогнат да определят ценообразуването и да преценят кои активи потенциално ще осигурят по-висока доходност, както и да прогнозират възвръщаемостта на текущите инвестиции, за да помогнат при вземането на активи, хеджиране, управление на риска и оптимизиране на портфейла.
GARCH моделите се използват, когато дисперсията на термина за грешка не е постоянна. Тоест, терминът за грешка е хетероскедастичен. Хетерокедастичността описва неправилния модел на изменение на грешка или променлива в статистически модел. По същество, където има хетерокедастичност, наблюденията не съответстват на линеен модел. Вместо това те са склонни да се струпват. Следователно, ако статистическите модели, които приемат постоянна разлика, се използват за тези данни, тогава изводите и прогнозната стойност, които човек може да извлече от модела, няма да бъдат надеждни.
Приема се, че отклонението на термина за грешка в моделите GARCH се променя систематично и зависи от средния размер на термините за грешка в предходни периоди. С други думи, тя има условна хетерокедастичност, а причината за хетерокедастичността е, че терминът на грешката следва модел на авторегресивна подвижна средна стойност. Това означава, че е функция на средно ниво на собствените му минали стойности.
История на GARCH
GARCH е формулиран през 80-те години като начин за справяне с проблема за прогнозиране на нестабилността в цените на активите. Той се основава на пробивната работа на икономиста Робърт Енгъл от 1982 г. при въвеждането на модела на Autoregressive Conditional Heteroskedasticity (ARCH). Неговият модел предположи, че изменението на финансовата възвръщаемост не е постоянно във времето, но е автокорелизирано или зависи от / зависими един от друг. Например, това може да се види в възвръщаемостта на акциите, когато периодите на променливост на възвръщаемостта са склонни да бъдат групирани заедно.
От първоначалното въведение са се появили много вариации на GARCH. Те включват нелинейни (NGARCH), които адресират корелацията и наблюдават "колебливост на променливостта" на възвръщаемостта, и интегриран GARCH (IGARCH), който ограничава параметъра за нестабилност Всички вариации на модела GARCH се стремят да включват посоката, положителна или отрицателна, възвръщаемост в допълнение към величината (адресирана в оригиналния модел).
Всяко производно на GARCH може да се използва за приспособяване на специфичните качества на данните за запасите, индустрията или икономиката. При оценката на риска финансовите институции включват GARCH модели в своята стойност на риск (VAR), максимална очаквана загуба (независимо дали за единична инвестиционна или търговска позиция, портфейл или на ниво разделяне или на ниво фирма) за определен период от време прогнози. GARCH моделите се разглеждат, за да осигурят по-добри измервания на риска, отколкото могат да бъдат получени само чрез проследяване на стандартното отклонение.
Проведени са различни проучвания за надеждността на различни модели на GARCH по време на различни пазарни условия, включително през периодите, водещи до и след финансовата криза през 2007 г.
